Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour j’ai vraiment besoin d’aide pour cette exercice
On considère l'expression : E = (3x - 2)(3x + 2) - (3x - 2)(x - 2)
1. Développer et réduire l'expression E.
2. Factoriser l'expression E.
3. a. Résoudre l'équation (3x - 2)(2x + 4) = 0 (on effectuera la vérification)
b. Cette équation a-t-elle une solution entière ? Justifier.
c. Cette équation a-t-elle une solution décimale ? Justifier.
Merci beaucoup d’avance :)


Sagot :

Vins

Réponse :

bonsoir

E = (3x - 2)(3x + 2) - (3x - 2)(x - 2)

1. Développer et réduire l'expression E.

E =  9 x² - 4 - ( 3 x² - 6 x - 2 x + 4 )

E =  9 x² - 4 - 3 x² + 8 x - 4

E =  6 x² + 8 x -  8

2. Factoriser l'expression E.

E = ( 3 x - 2 ) ( 3 x + 2 - x + 2 )

E = ( 3 x - 2 ) ( 2 x + 4 )

E =  2 ( 3 x - 2 ) ( x + 2 )

3. a. Résoudre l'équation (3x - 2)(2x + 4) = 0

x =  2/3 ou - 2 , je te laisse faire la vérification

b. Cette équation a-t-elle une solution entière ?  oui  2

c. Cette équation a-t-elle une solution décimale ?  non  = 0.66.............

Explications :

Bonsoir :)

Réponse en explications étape par étape :

# Exercice : On considère l'expression : E = (3x - 2)(3x + 2) - (3x - 2)(x - 2).

- Questions :

1. Développer et réduire l'expression E :

E = (3x - 2)(3x + 2) - (3x - 2)(x - 2)

E = (3x)² - (2)² - (2 * 2) - [(3x * x) - (3x * 2) - (2 * x) + (2 * 2)]

E = 9x² - 4 - (3x² - 6x - 2x + 4)

E = 9x² - 4 - 3x² + 6x + 2x - 4

E = 9x² - 3x² + 6x + 2x - 4 - 4

E = 6x² + 8x - 8

2. Factoriser l'expression E :

E = (3x - 2)(3x + 2) - (3x - 2)(x - 2)

E = (3x - 2)(3x + 2 - x + 2)

E = (3x - 2)(2x + 4)

3. a. Résoudre l'équation (3x - 2)(2x + 4) = 0 :

                            (3x - 2)(2x + 4) = 0

Soit :      3x - 2 = 0         ou       2x + 4 = 0

                   3x = 2         ou             2x = - 4

                     x = 2/3      ou               x = - 4/2

                     x = 2/3      ou               x = - 2

                                S = { 2/3 ; - 2 }

~ Vérification n°1 ~  :             (3x - 2)(2x + 4) = 0

                               (3 * 2/3 - 2)(2 * 2/3 + 4) = 0

                                              (2 - 2)(4/3 + 4) = 0

                                                    0(4/3 + 4 ) = 0

D'où la valeur estimée n°1 qui est " x = 2/3 " est respectivement correcte.

~ Vérification  n°2 ~ :            (3x - 2)(2x + 4) = 0

                               (3 * - 2 - 2)(2 * - 2 + 4) = 0

                                           (- 6 - 2)(- 4 + 4) = 0

                                                         0 * - 8 = 0

D'où la valeur estimée n°2 qui est " x = - 2 " est respectivement correcte.

3. b. Cette équation a-t-elle une solution entière ? Justifier.

Oui cette équation admet une solution entière et non décimal tel que " 0 ".

3. c. Cette équation a-t-elle une solution décimale ? Justifier.

Non cette équation n'admet pas une solution décimale puisque le " 0 " n'est pas forcément décimale tel que " 0,0000...... ".

Voilà

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.