Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
1)
La mesure de l’angle AB^C est égale:
AB^C = 180- (alpha) = 180-68 = 112 .
Alors, puisque les droites (BC) et (DE), coupées par la sécante (DB), forment deux angles correspondants (béta et AB^C) de même mesure donc les droites
(BC) et (DE) sont parallèles.
2)
On a:
AE = AC + CE => CE = AE - AC.
Or, d’après le théorème de Thales, on a:
AB/AD = AC/AE => AC = AE *(AB /AD).
D’où
CE = AE - AE *(AB /AD).
= AE* [1-(AB/AD)]. Avec AD = AB + BD
C’est- à-dire:
CE = AE* [1-(AB/(AB+BD))].
AN: CE = 19,08*[1-(7,2/(7,2+3,4))] = 6,12.
Alors CE = 6,12cm
De même d’après le théorème de Thales, on a:
AB/AD = BC/DE => BC = DE *( AB/AD)
Donc
BC = DE*[AB/(AB+ BD)].
AN : BC = 14,4* [7,2/(7,2+3,4)] = 9,78.
Alors BC = 9,78 cm
AN = Application Numérique.
La mesure de l’angle AB^C est égale:
AB^C = 180- (alpha) = 180-68 = 112 .
Alors, puisque les droites (BC) et (DE), coupées par la sécante (DB), forment deux angles correspondants (béta et AB^C) de même mesure donc les droites
(BC) et (DE) sont parallèles.
2)
On a:
AE = AC + CE => CE = AE - AC.
Or, d’après le théorème de Thales, on a:
AB/AD = AC/AE => AC = AE *(AB /AD).
D’où
CE = AE - AE *(AB /AD).
= AE* [1-(AB/AD)]. Avec AD = AB + BD
C’est- à-dire:
CE = AE* [1-(AB/(AB+BD))].
AN: CE = 19,08*[1-(7,2/(7,2+3,4))] = 6,12.
Alors CE = 6,12cm
De même d’après le théorème de Thales, on a:
AB/AD = BC/DE => BC = DE *( AB/AD)
Donc
BC = DE*[AB/(AB+ BD)].
AN : BC = 14,4* [7,2/(7,2+3,4)] = 9,78.
Alors BC = 9,78 cm
AN = Application Numérique.
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.