Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Dans la figure ci-contre, les droites (DB) et
(EC) se coupe en A.
On donne les longueurs suivantes :
AB = 7,2 cm ; BD = 3,4 cm ; AE = 19,08 cm
et DE = 14,4 cm.
1. Prouver que les droites (BC) et (DE) sont
parallèles.
2. Calculer CE et BC.

quelqun peut m’aider svp mercii

Dans La Figure Cicontre Les Droites DB Et EC Se Coupe En A On Donne Les Longueurs Suivantes AB 72 Cm BD 34 Cm AE 1908 Cm Et DE 144 Cm 1 Prouver Que Les Droites class=

Sagot :

1)
La mesure de l’angle AB^C est égale:
AB^C = 180- (alpha) = 180-68 = 112 .
Alors, puisque les droites (BC) et (DE), coupées par la sécante (DB), forment deux angles correspondants (béta et AB^C) de même mesure donc les droites
(BC) et (DE) sont parallèles.

2)
On a:

AE = AC + CE => CE = AE - AC.

Or, d’après le théorème de Thales, on a:

AB/AD = AC/AE => AC = AE *(AB /AD).
D’où
CE = AE - AE *(AB /AD).
= AE* [1-(AB/AD)]. Avec AD = AB + BD
C’est- à-dire:
CE = AE* [1-(AB/(AB+BD))].

AN: CE = 19,08*[1-(7,2/(7,2+3,4))] = 6,12.
Alors CE = 6,12cm

De même d’après le théorème de Thales, on a:
AB/AD = BC/DE => BC = DE *( AB/AD)
Donc
BC = DE*[AB/(AB+ BD)].
AN : BC = 14,4* [7,2/(7,2+3,4)] = 9,78.

Alors BC = 9,78 cm


AN = Application Numérique.


Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.