Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour, pouvez vous m aider a resoudre cet exercice! Dans le plan muni d un repere orthonorme on considere le parabole p y=x^2 et le point A(1;0) L objet de l exercice est de determiner le point m tel que la distance AM soit minimale. Pour tout x on pose f(x)=AM^2 ou M est le point de p d abscisse x. 1)determiner f(x). 2)a) etudier les variation de f'sur R b) en deduire que l equation f'(x)=0 admet une unique solution a sur R. Justifier que 0<a0 on recherche des valeurs approchees b et c de a a e pres telles que b<a0 et que c-b<e c'est vraiment urgent! merci de votre aide



Sagot :

AM^2 vaut (x-1)^2+y^2 mais y=x^2 donc f(x)=x^4+x^2-2x+1

 

f'=3x^3+2x-2 a pour dérivée 9x^2+2 toujours >0 donc comme f' est <0 en -inf et >0 en +inf, elle s'annule une fois sur R

et comme f'(0)=-2, cette valeur qui annule f' est  >0

 

ensuite : calculette !!!

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.