Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour l’exercice est pour mercredi , merci d’avance

Martha souhaite construire un enclos rectangulaire
dans son jardin pour son chiot au tempérament fugueur.
Elle dispose de 60 mètres de grillage et souhaite que
cet enclos soit le plus vaste possible. On souhaite
déterminer les dimensions et l'aire de cet enclos.
1. On note x et y les dimensions de cet enclos
rectangulaire.
a. Dans quel intervalle x et y peuvent-ils varier ? Cet
intervalle est noté I dans la suite.
b.Après avoir exprimé y en fonction de x , montrer que l’aire en m^2, de cet enclos est égale à : A(x) = -x^2 + 30x

2. Étudier les variations de la fonction À sur I .

3. Conclure


Sagot :

ayuda

bjr

Q1

a

              A            x               B

              y

               D                            C

on sait que périmètre ABCD = 60

donc que  2 (x + y) = 60

donc que x+y = 30

donc x et y peuvent varier de 0 à 30

b

aire enclos = x * y

comme x + y = 30

=> y = 30 - x

soit A = x * y = x (30 - x) = 30x - x² = -x² + 30x

Q2

variations de A

je calcule sa dérivée A'

A'(x) = -2x + 30

signe de A'(x) ?

-2x + 30 > 0

quand x < 15

x              0            15            30

A'(x)                +             -

A(x)                 D            C

pour que l'aire soit maximale il faut que la longueur x = 15

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.