Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour, pouvez-vous m'aider ?
On considère la fonction h définie pour tout x ∈ R par
h(x)= e^x-e^-x/e^x+e^-x


1. Montrer que la courbe représentative de h dans un repère admet l’origine comme centre de symétrie.

2. Montrer que h est dérivable sur R.

3. Montrer que la fonction h vérifie h′=1−h^2


Sagot :

Réponse :

Explications étape par étape :

■ h(-x) = - h(x) donc l' origine du repère est bien centre de symétrie !

■ h ' (x) = [(e^x+e^(-x)) (e^x+e^(-x)) - (e^x-e^(-x)) (e^x-e^(-x))] / (e^x+e^(-x))²

            = [ (e^x+e^(-x))² - (e^x-e^(-x))² ] / (e^x+e^(-x))²

            = 1 - [ (e^x-e^(-x))² / (e^x+e^(-x))² ]

            = 1 - [ h(x) ]²

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.