Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
bjr
Q1
appuyez vous sur le cours
Soit f une fonction dérivable en a.
L’équation réduite de la tangente T à la courbe f au point d’abscisse a est :
y = f′(a) (x−a) + f(a)
il faut donc calculer la dérivée f'(x)
puis f'(a) avec ici a = 1 => f'(1)
puis f(a) avec ici a = 1 => f(1)
on y va :
comme f(x) = x² + 6x + 3
=> f'(x) = 2x + 6 (voir tableau dérivées si besoin)
donc f'(1) = 2 * 1 + 6 = 8
et f(1) = 1² + 6*1 + 3 = 10
ce qui nous donne pour l'équation de T
y = 8 (x - 1) + 10
soit y = 8x - 8 + 10
y = 8x + 2
Q2
il faut donc étudier le signe de " f(x) - y "
quand f(x) - y > 0 => f est au-dessus de la tangente
quand f(x) - y < 0 => f est en dessous de tangente
f(x) = x² + 6x + 3
et T : y = 8x +2
f(x) - y = x² + 6x + 3 - (8x + 2) = x² - 2x + 1 = (x - 1)²
étude du signe de (x - 1)² ?
toujours positif
donc Cf au dessus de T - et Cf et T se touche en x = 1.
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.