Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonjour,

J’aimerai savoir si quelqu’un aurait la solution suivante:

Justifier que pour tout x,
ln x > x-1

Merci beaucoup


Sagot :

bjr

Justifier que pour tout x, ln x > x-1

on étudie la fonction f(x) = x - 1 - lnx

• elle est définie sur ]0 , +∞[

• f'(x) = 1 - 1/x = (x - 1)/x ; f'(x) a le signe de x - 1 (x > 0)

x          0             1             +∞

f'(x)       ||      -      0       +

f(x)          +∞                       +∞

                    ↘            ↗  

                           0

f(x) est toujours ≥ 0

x - 1 - lnx ≥ 0

lnx ≤ x - 1

c'est le contraire de ce que tu as écrit

View image jpmorin3
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.