Answered

Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Un professeur conçoit un QCM de à trois propositions chacune. Nous voulons savoir combien de questions il faut mettre pour qu’un élève répondant au hasard n’ait que 5% de chances de réussir.

1) Si le QCM contient 5 questions, montrer que le nombre de bonnes réponses obtenues en tapant au hasard est une loi binomiale de paramètres n=5 et p=1/4. 

2)Si le QCM contient 5 questions, quel est le plus petit k pour lequel P(X  < k) plus grand que 0.95 ?

3)Si le QCM contient N questions, alors nombre de réponses correctes suit alors une loi binomiale de paramètres N et 0.25. Donner le N minimum pour avoir

   P(X  < N/2 ) plus grand que 0.95.

Pour cela, refaire la question (2) en remplaçant 5 par 1, 2, 3, etc. jusqu’à obtenir le résultat


Beosin d'aide svpp :)



Sagot :

Reponse donnée à un autre élève :

si une seule proposition est la bonne réponse, la proba de la trouver est 1/3, pas 1/4...
par contre si c'est "de une à 3 propositions juste", il faut y regarder de plus près. Mais cela donne alors 1/8 et toujours pas 1/4...

Ton prof a pu se gourer... ?

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.