Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonjour,
Question posée :
Démontrer que le triangle FGH est rectangle en F.
Pour démontrer qu'un triangle est rectangle, on utilise la réciproque du théorème de Pythagore. Cependant, on doit alors avoir TOUTES les longueurs du triangle, ce qui n'est pas le cas ici. (il manque la longueur HF).
Il va donc falloir calculer HF dans un premier temps avec le théorème de Thalès.
Démonstration :
Les points I, G, H et J, G, F sont alignés. De plus, (HI) // (FJ)
D'après le théorème de Thalès :
GH/GI = GF/GJ = HF/JI
d'où :
5/6 = 4/4.8 = HF/3.6
HF = 3.6 × 4 ÷ 4.8 = 3 cm (simple produit en croix)
Maintenant, nous pouvons répondre à la question posée.
Démonstration :
HG² = 5² = 25
HF² + FG² = 3² + 4² = 9 + 16 = 25
Comme HG² = HF² + FG², d'après la réciproque du théorème de Pythagore, le triangle FGH est rectangle en F.
En espérant t'avoir aidé(e).
Bonjour,
Les droites (Hi) et (Fj) se coupent en F
On peut donc appliquer le th de thales :
On a GF/GJ = GH/GI = FH/JI
-> 4/4,8 = FH/3,6 -> 4*3,6 divise par 4,8 = 3
FH = 3 cm
Dans le triangle HFG dont le côté le plsu long est HG :
HG au carré = 5 au carré = 25
HF au carré + FG au carré = 3 au carré + 4 au carré = 9+16= 25 ->= 25
Donc HFG est rectangle en F
J’espère avoir pu t’aider :)
Les droites (Hi) et (Fj) se coupent en F
On peut donc appliquer le th de thales :
On a GF/GJ = GH/GI = FH/JI
-> 4/4,8 = FH/3,6 -> 4*3,6 divise par 4,8 = 3
FH = 3 cm
Dans le triangle HFG dont le côté le plsu long est HG :
HG au carré = 5 au carré = 25
HF au carré + FG au carré = 3 au carré + 4 au carré = 9+16= 25 ->= 25
Donc HFG est rectangle en F
J’espère avoir pu t’aider :)
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.