Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Je ne sais pas trop comment répondre à cette question:

 

On sait qu'une fonction f est derivable sur R, qu'il exite x0 tel que f(x0) est different de 0. Et pour tout reels x et y, f(x+y) = f(x)f(y)

 

Montrez que f est a valeurs strictement positives



Sagot :

D'abord, f ne peut pas s'anuler, car si il existe x1 tel que f(x1)=0 alors pour tout y, f(x1+y)=0 en particulier pour y=x0-x1, contradiction.

 

si x1 existe avec f(x1)<0 alors f(2x1) est >0 donc f s'annule entre x1 et 2x1 (elle est continue ) ce qui contredit le raisonnement précédent

Au final, donc, pour tout x réel, f(x)>0

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.