Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour, je n’arrive pas à cet exercice, est-ce que quelqu’un pourrait m’aider s’il vous plaît ? Merci d’avance.

On rappelle qu'on note ch la fonction cosinus hyperbolique définie sur R par ch(x)=e^x+e^-x/2 et sinus hyperbolique sh la fonction sinus hyperbolique définie sur R par sh(x)=e^x-e^-x/2. Soit f la fonction définie pour tout réel x par f(x)=(ch(x))^2-(sh(x))^2. Montrez que, pour tout réel x, f(x)=1.

Sagot :

La méthode de résolution est plutôt simple, remplace ch et sh par leurs formules :

f(x) = ((e^x + e^-x)^2)/4 - ((e^x - e^-x)^2/4)

À partir de là, utilise juste la célèbre idendite remarquable :

(a+b)(a-b) = a^2 - b^2

Et tu trouveras aisément, certains termes s'annulent

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.