Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

bonjour qui peut m aider pour mon exercice 4 svp merci

Bonjour Qui Peut M Aider Pour Mon Exercice 4 Svp Merci class=

Sagot :

MPower

Réponse :

Bonjour,

Benoît possède un échiquier ♖♘♗♕♔♘♗♖ qui a la forme d'un carré, lui-même composé de 64 carreaux de même dimension (cf. pièce jointe).

L'aire de cet échiquier est égale à 200 cm².

Or si un quadrilatère est un carré, alors ce quadrilatère possède 4 côtés de même longueur, avec l'aire qui se traduit par le côté élevé au carré.

On pose [tex]x[/tex] la longueur d'un côté de cet échiquier.

[tex]A_{\'echiquier} = 200\\\\\Leftrightarrow x^2 = 200\\\\\Leftrightarrow \sqrt{x^2} = \sqrt{200}\\\\\Leftrightarrow x = 10\sqrt{2} \ cm[/tex]

On nous demande de déterminer la longueur d'une diagonale d'un carreau (qu'on nommera [tex]y[/tex] ).

Pour cela, il faudra tout d'abord retrouver la longueur d'un côté de ce carreau.

[tex]\dfrac{10\sqrt{2}}{8} = \dfrac{5\sqrt{2}}{4} \ cm[/tex]

Par suite, d'après le théorème de Pythagore:

[tex]y^2 = \left(\dfrac{5\sqrt{2}}{4}\right)^2 + \left(\dfrac{5\sqrt{2}}{4}\right)^2\\\\y^2 = \dfrac{25}{4}[/tex]

Et comme [tex]y[/tex] est une longueur, alors elle est positive.

Donc,

[tex]y = \sqrt{\dfrac{25}{4}} = 2,5 \ cm[/tex]

View image MPower
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.