Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Bonjour besoin d'aide svp voici la question ci-dessous

Exo : Soit f la fonction définie sur R par f(x)=In (1 +e^x) et Cf,
sa courbe représentative dans un repère.
1. a. Étudier les limites de f en –oo et en +oo.
b. La courbe Cf admet-elle une asymptote horizontale ?
2. Dresser le tableau de variation de f.
3. Démontrer que l'équation f(x)=m admet une unique
solution pour tout réel m strictement positif.
4. Déterminer une équation de la tangente T à la courbe Cf
au point d'abscisse 0.
5. Démontrer que la courbe Cf est située au-dessus de la droite d d'équation y=x.
6. Construire la courbe Cf, et les droites T et d.​


Sagot :

Réponse :

Explications étape par étape :

f(x) = Ln (1 + e^x) sur IR

■ Lim f(x) pour x --> -∞ :

  Lim f(x) = Lim Ln1 = 0

  la courbe admet une asymptote horizontale

à gauche (confondue avec l' axe des abscisses)

■ Lim f(x) pour x --> +∞ :

   Lim f(x) = Lim Ln(e^x) = Lim x = +∞

   la courbe admet une asymptote oblique

   à droite d' équation ( y = x )

■ dérivée f ' (x) :

   f ' (x) = (e^x) / (1 + e^x) toujours positive !

■ tableau :

  x --> -∞         -1          0             10              +∞

variation ->             croissante

f(x) --> 0        0,3       Ln2           10              +∞

■ f(x) = m positif admet bien une solution UNIQUE

puisque la fonction f est STRICTEMENT croissante sur IR .  

■ Tangente au point (0 ; Ln2) :

  f ' (0) = 1/2 = 0,5

  donc l' équation de la Tangente est :

  y = 0,5x + Ln2 .

  qui passe par les points (0;Ln2) et (10 ; 5,7)

■ courbe Cf au-dessus de la droite ( y = x ) ?

  f(x) > x donne Ln (1 + e^x) > x

                                1 + e^x > e^x

                                         1 > 0

  cette inégalité est toujours vraie

 donc Cf est bien au-dessus de la droite ( y = x ) .

■ remarque pour x = 25,5 :

   f(25,5) ≈ 25,5

Réponse :

bonne soirée

Explications étape par étape

View image danielwenin
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.