Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour, je n'arrive pas à faire cet exercice, une personne pourrai m'aider svp, voici l'énoncé

Julie observe la courbe représentative d'une fonction f définie sur R.

1. Julie conjecture que l'équation f(x) = 0 admet exactement deux solutions dans l'intervalle [-1;3].
Proposer un raisonnement possible.


2. L'expression algébrique de f est :
f(x) =
[tex]15 {x}^{3} - 41x {}^{2} + 24x - 4[/tex]
pour tout nombre réel x.


a. Démontrer l'égalité f(x) = (3x - 1)(5x-2)(x - 2) pour tout nombre réel x.


b. Résoudre algébriquement dans l'intervalle [-1;3] l'équation f(x) = 0, puis conclure quant à la conjecture de Julie.

(la courbe en question est en pièce jointe)

Bonne Journée ! ​


Bonjour Je Narrive Pas À Faire Cet Exercice Une Personne Pourrai Maider Svp Voici LénoncéJulie Observe La Courbe Représentative Dune Fonction F Définie Sur R1 J class=

Sagot :

ayuda

bjr

Q1

f(x) = 0 sur [-1 ; 3]

si on cherche les solutions de f(x) = 0, on cherche donc les points d'intersection entre la courbe et la droite horizontale y = 0, donc entre la courbe et l'axe des abscisses

on regarde donc la courbe

et on conjecture qu'il y a 2 solutions a priori

x ≈ 0,3

et x = 2

Q2

a - vous développez la forme factorisée de f donnée

b

f(x) = 0 par le calcul revient à résoudre

(3x-1) (5x-2) (x-2) = 0

équation produit que vous savez résoudre - 3 solutions puisque 3 facteurs

donc conjecture de julie fausse puisque 3 solutions et pas 2 comme conjecturé à la Q1..

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.