Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

On Considère la fonction f définie sur l'intervalle ]-1/2;+l'infini[ par : 

f(x)=2x-3+9/(2x+1)

Soit C sa courbe représentative dans un repère orthogonal (O;i;j)

 

QUESTIONS : 

 

3)a Montrer que la droite D d'équation y=2x-3 est une asymptote de C

 

3)b Etudier la position de C par rapport à D lorsque x varie dans ]-1/2;+l'infini[

 

4)a On désigne par f' la fonction dérivée de la fonction f.Montrer que pour tout x de ]-1/2;+l'infini[ , f(x)=(8(x+2)(x-1)/(2x+1)²)

 

4)b En déduire le tableau de variations de f sur ]-1/2;+l'infini[ 

      Compléter le tableau de variations en y portant les limites obtenues au 1. et 2.

 

5) Déduire du tableau de variation le signe de f(x) lorsque x varie dans ]-1/2;+l'infini[

 

6) Indiquer le nombre de solutions de l'équation f(x)=10 sur ]-1/2;+l'infini[



Sagot :

3a) calcule  [tex]\lim_{x \to \infty} ( f(x) - ( 2x - 3 ) )[/tex]

3b ) calcule le signe de f(x) - ( 2x -3 ) si  + alors C au dessus de D sinon l'inverse.

4a) derivée de 2x - 3 = 2 

      dérivée de 9 / ( 2x + 1 ) = - 9 * 2 / ( 2x + 1 ) ² 

donc dérivée de f = 2 - 9 * 2 / ( 2x + 1 ) ² = ( 2 ( 2x+1)² - 18 ) / ( 2x+1)²

il te reste à vérifier que 8( x+2)(x-1) = 2( 2x+1 )² -18 en développant les 2

 

4b) f ' ( x) = ( 8 ( x + 2 ) ( x - 1 ) / ( 2x +1 ) ² 

( 2x +1 )² > 0 sur l'intervalle  ]-1/2;+l'infini[ 

x+2 >0 sur  ]-1/2;+l'infini[ 

x-1 > 0 sur  ]1;+l'infini[  et x-1 < 0 sur  ]-1/2;1[ 

donc f ' ( x ) < 0 sur  ]-1/2;1[  alors f décroissante

  et f ' ( x ) > 0 sur  ]1;+l'infini[ alors f croissante


5) f ( 1 ) = 2 donc le minimum de la fonction est positif alors f(x) > 0.


6) lim en +infini = + infini donc une solution sur  ]1;+l'infini[

    lim en  -1/2 = + infini donc aussi une solution sur ]-1/2;1[ 


alors 2 solutions sur ]-1/2;+l'infini[

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.