Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonsoir
Je suis en terminale (ancienne S) et j'ai besoin d'aide pour cet exercice.
Je vous remercie par avance.


Sagot :

Réponse :

Explications étape par étape :

■ bonjour Soda de régime ! ☺

■ pour 0 < x < 1 :

  Ln(x) est négatif --> donc Ln(x) < x .

  pour x = 1 : Ln1 = 0 < 1

  pour x > 1 : Ln(x) < x est évident

  conclusion :

  on a bien Ln(x) < x pour x strictement positif

■ 2°) f(1) = Ln1 / 1 = 0/1 = 0

■ 3a) f ' (x) = [ (x^k)/x - k(x^(k-1))*Ln(x) ] / x^(2k)

                 = [ 1/x - k Ln(x) /x ] / x^k

                 = [ 1 - k Ln(x) ] / (x^(k-1))

         cette dérivée est nulle pour k Ln(x) = 1

                                                            Ln(x) = 1/k

                                                                x = exp(1/k) .

         Le Maximum cherché est donc :

         M ( exp(1/k) ; 1/(k*exp(1/k)^k) ) .

■ 3b) l' asymptote est verticale pour x positif voisin de 0

                   ( x = 0 )

         l' asymptote est l' axe des abscisses pour x --> + ∞

                   ( y = 0 )

■ Tu tentes la partie B ?

■ remarque :

pas de développement limité pour Ln(x) au voisinage de zéro ♥