Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Une pompe est utilisée pour faire circuler un fluide dans un circuit.
Le débit varie en fonction de la température.
Le débit, exprimé en litres par heure, est donné en fonction de la température exprimée en degrés par la
fonction définie par :




pour [ ].
1) Calculer le débit de la pompe pour une température de (-1)°C.
2) a) Résoudre l’équation

b) Déterminer pour quelles températures le débit est égal à 2 litres par heure.
On arrondira à 0,1 degrés près
3) a) Démontrer que, pour tout [ ]





.
b) Étudier le signe de , et construire le tableau de variations complet de sur [ ]
Donner alors la valeur exacte du débit maximal et la température correspondante.

VOIR PJ
Merci à vous si vous m'aidez
Je ne comprends pas tout l'exo :/


Une Pompe Est Utilisée Pour Faire Circuler Un Fluide Dans Un Circuit Le Débit Varie En Fonction De La Température Le Débit Exprimé En Litres Par Heure Est Donné class=

Sagot :

Tenurf

Bjr,

comme [tex]x^2+1>0[/tex] f est bien définie

1)

[tex]f(-1)=\dfrac{1-3+5}{1+1}=\dfrac{3}{2}[/tex]

2) a)

[tex]\Delta = 3^2+4*3=21\\\\x_1=\dfrac{3-\sqrt{21}}{2}\\\\x_2=\dfrac{3+\sqrt{21}}{2}[/tex]

b)

chercher x tel que f(x)=2

[tex]\iff x^2+3x+5=2(x^2+1)\\\\\iff x^2-3x-3=0[/tex]

C'est l'équation du a) donc les solutions sont -0,8 et 3,8

3)a)

[tex]f'(x)=\dfrac{(2x+3)(x^2+1)-2x(x^2+3x+5)}{(x^2+1)^2}\\\\=\dfrac{2x^3+3x^2+2x+3-2x^3-6x^2-10x}{(x^2+1)^2}\\\\=\dfrac{-3x^2-8x+3}{(x^2+1)^2}\\\\[/tex]

b)

[tex]-3x^2-8x+3=(-3x+1)(x+3)[/tex]

donc pour x dans [-5;-3]

[tex]f'(x) \leq 0[/tex]

pour x dans [-3;1/3]

[tex]f'(x) \geq 0[/tex]

pour x dans [1/3;5]

[tex]f'(x) \leq 0[/tex]

Donc on peut dresser le tableau de variations de f

[tex]\left|\begin{array}{c|ccccc}x&-5&-3&&1/3&+5\\---&---&---&---&---&---\\f'(x)&-&0&+&0&-\\---&---&---&---&---&---\\f(x)&\searrow&f(-3) &\nearrow &f(1/3)&\searrow\end{array}\right|[/tex]

f(-5)=0,5769....

f(-3)=0,5

f(1/3)=5,5

f(5)=1,7....

la max de f est atteint and x=1/3 et vaut f(1/3)=5,5

température = 1/3

débit max = 5,5

Merci

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.