Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Les droites (EA) et (BD) sont parallèles.
1.
Démontrer que DBC est un triangle rectangle.
2. En déduire que AEC est un triangle rectangle.
3. Calculer la longueur EC. Justifier.

Les Droites EA Et BD Sont Parallèles 1 Démontrer Que DBC Est Un Triangle Rectangle 2 En Déduire Que AEC Est Un Triangle Rectangle 3 Calculer La Longueur EC Just class=

Sagot :

1

[tex]db {}^{2} + bc {}^{2} = 3 {}^{2} + 4 {}^{2} = 9 + 16 = 25cm[/tex]

[tex]dc {}^{2} = 5 {}^{2} = 25cm[/tex]

d apres la reciproque du theoreme de pythagore

[tex]db {}^{2} + bc {}^{2} = dc {}^{2} [/tex]

donc le triangle dbc est rectangle en B

2) on a (db) perpendiculaire a (ab)

et (db) et(ea) sont parallele

donc (ae) perpendiculaire a(ab) (propriete de l egalite)

par la suite aec est un triangle rectangle en a

3)on a (db) paralleles a (ae)

d apres le theoreme de thales

[tex] \frac{cd}{ce} = \frac{cb}{ca} = \frac{db}{ae} [/tex]

[tex] \frac{cd}{ce } = \frac{db}{ae} = \frac{5}{ce} = \frac{3}{7.5} [/tex]

[tex]ce = \frac{5 \times 7.5}{3} = 12.5cm[/tex]

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.