Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
• On regarde pour chacune des fonctions si elle répondent à une des deux règles : * f(-x) = f(x) -> la fonction est paire.
* f(-x) = - f(x) -> la fonction est impaire.
• Donc, dans chaque équation, tu remplaces x par -x :
a) Par exemple, f(-x) = 3*(-x) = -3x = -f(x)
Comme f(-x) = -f(x), la fonction est impaire.
Pour t’aider, tu peux imaginer que l’on multiplie f(x) par -1 pour obtenir -f(x) : On a f(x)*(-1)
= (3x)*(-1)
= -3x
= -f(x)
Sinon, tu peux vérifier sur ta calculatrice si la représentation graphique (la courbe qui la représente) de la fonction est symétrique à l’axe des ordonnées, dans ce cas là, la fonction est paire. Et si ce n’est pas le cas, alors la fonction est impaire.
* f(-x) = - f(x) -> la fonction est impaire.
• Donc, dans chaque équation, tu remplaces x par -x :
a) Par exemple, f(-x) = 3*(-x) = -3x = -f(x)
Comme f(-x) = -f(x), la fonction est impaire.
Pour t’aider, tu peux imaginer que l’on multiplie f(x) par -1 pour obtenir -f(x) : On a f(x)*(-1)
= (3x)*(-1)
= -3x
= -f(x)
Sinon, tu peux vérifier sur ta calculatrice si la représentation graphique (la courbe qui la représente) de la fonction est symétrique à l’axe des ordonnées, dans ce cas là, la fonction est paire. Et si ce n’est pas le cas, alors la fonction est impaire.
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.