Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour pouvez-vous m'aider pour mon dm svp, il est a rendre pour demain. Une école de danse danse a ouvert ses portes en 2016. Pour tout entier naturel n, on note U n le nombres d'inscrits l'année 2016+n. On admet que : U n= 200 ×
[tex]1.15 ^{n} [/tex]
+600. On veut déterminer à partir de quelle année il y aura plus de deux mille adhérents.

1. Montrer que l'inéquation U n >2000 est équivalente à
[tex]1.15^{n} [/tex]
>7.

2. En déduire que
[tex] n > \frac{log(7)}{ log_{}(1.15) }[/tex]


3.Donner une valeur approchée à 0,1 près de
[tex] \frac{ log(7) }{ log(1.15) } [/tex]
puis conclure.​


Bonjour Pouvezvous Maider Pour Mon Dm Svp Il Est A Rendre Pour Demain Une École De Danse Danse A Ouvert Ses Portes En 2016 Pour Tout Entier Naturel N On Note U class=

Sagot :

Réponse:

Bonjour,

1.Un>2000

200×1,15^n+600>2000

200×1,15^n>1400

1,15^n>7

2. Nous avons a^x=b donc x= log(b)/log(a)

C'est pourquoi n>log(7)/log(1,15)

3. n>13,92, il y aura plus de 2000adherent au bout de 14ans

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.