Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonsoir

 

Je n'ai pas très bien compris un exercice de math car c'est la première fois que j'ai à le faire.

L'énoncé est le suivant :

 

Determiner la mediane des notes suivantes :

5-6-6-7-7-8-8-10-10-10-11-12-13-14-16-18-20

 

Merci d'avance de votre aide.

A bientôt !



Sagot :

Définition:

La médiane dd'une série statistique [tex](x_i)[/tex] est la valeur Me qui divise l'effectif total N en 2 parties égales ; le calcul de Me est donné par :

* si N est pair alors [tex]Me=\frac {x_{N/2}+x_{N/2+1}} {2}[/tex]

* si N est impair alors [tex]Me=x_{(N-1)/2+1}[/tex]

 

ici N=17 donc N est impair

donc [tex]Me=x_{(17-1)/2+1}[/tex]

donc [tex]Me=x_{9}[/tex]

donc [tex]Me=10[/tex]

La médiane est une valeur telle que :

—   la moitié des effectifs d'une série ait une valeur inférieure à elle

—   et la moitié des effectifs de cette série ait une valeur supérieure à elle.

C'est donc la valeur située à 50% de la série.

 

 

 

Il y a ici un effectif (impair) de 17 notes.

 

Or    17 ÷ 2  =  8,5

 

Si l'on prend donc la valeur de la 9e note (soit 10), il y aura :

—   8 notes de valeur inférieure

—   et 8 notes de valeur supérieure

 

La valeur de la médiane de cette série de note est donc :    Me  =  10

 

 

 

N.B. :   S'il y avait eu un effectif pair de seulement 16 notes, on aurait eu :

            16 ÷ 2  =  8

            Les deux valeurs « du milieu de la série » étant donc la 8e et la 9e valeurs,

            la médiane serait un nombre situé entre les deux valeurs si elles sont différentes

                                                          ou égal aux deux valeurs si elles sont identiques

            Ordinairement, on prend pour médiane la moyenne de ces deux valeurs.

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.