Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjour, je n'arrive pas à faire mon DM et je suis bloquer. Pouvez vous m'aider s'il vous plaît ?





Soif f la fonction définie sur R par
[tex]f(x) = - x^{3} + 3x^{2} + 1[/tex]
Dans un repère du plan, on appelle :

. Cf la courbe représentative de la fonction f
. A le point de Cf d'abscisse -1

1) Démontrer que la fonction f est dérivable en tout réel a et que f'(a)
[tex]f.(a)= - 3a^{2} + 6a[/tex]
2) Justifier que Cf admet exactement deux tangentes parallèles à l'axe des abscisses en presicant les coordonnées des points de tangence. Tracer ces tangentes sur le graphique.

3) a- Déterminer l'équation réduite de la tangente T-1 à Cf au point A. Tracer T-1 sur le graphique.

b- En quel point la courbe Cf admet elle une tangente parallèle à T-1 ? Préciser les coordonnés de ce point puis tracer cette tangente sur le graphique.

4) a- Démontrer que, pour tout réel a, la tangente Ta à Cf au point d'abscisse à admet pour équation réduite :
[tex]y = ( - 3a^{2} + 6a)x + 2a^{3} - 3a ^{2} + 1[/tex]
b- Démontrer que, pour tout réel a, on a :
[tex]2a ^{3}- 3a^{2} + 1 = (a - 1)^{2} (2a + 1)[/tex]
c- justifier alors que la tangente Ta passe par l'origine du repère si été seulement si
[tex](a - 1)^{2} (2a + 1) = 0[/tex]
d- En déduire les coordonnées des points en lesquels la tangente passe par l'origine du repère puis tracer ces tangentes sur le graphique.

Bonjour Je Narrive Pas À Faire Mon DM Et Je Suis Bloquer Pouvez Vous Maider Sil Vous Plaît Soif F La Fonction Définie Sur R Par Texfx X3 3x2 1texDans Un Repère class=

Sagot :

Réponse :

bonne soirée

Explications étape par étape

View image danielwenin
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.