Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Comparaison de limites et croissances comparées.
Bonjour pouvez vous m’aidez svp.


Comparaison De Limites Et Croissances Comparées Bonjour Pouvez Vous Maidez Svp class=

Sagot :

Tenurf

Bjr

1. C'est vrai.

[tex]e^x-3\rightarrow +\infty\\\\e^x-1\rightarrow +\infty[/tex]

Donc nous avons une forme indéterminé mais on peut mettre [tex]e^x[/tex] en facteur

[tex]f(x)=\dfrac{e^x-3}{e^x-1}=\dfrac{e^x(1-3e^{-x})}{e^x(1-e^{-x})}\\\\=\dfrac{1-3e^{-x}}{1-e^{-x}}\rightarrow 1[/tex]

2. C'est faux.

[tex]e^x \rightarrow 0[/tex] quand [tex]x \rightarrow -\infty[/tex]

donc

[tex]f(x) \rightarrow \dfrac{-3}{-1}=3[/tex]

3. C'est vrai.

[tex]e^x-3 \rightarrow e^0-3=1-3=-2 \\\\e^x-1 \rightarrow 0[/tex]

tout en étant positif si x>0 donc

[tex]f(x) \rightarrow "-3\times +\infty " =-\infty[/tex]

4. C'est faux.

pour x>0 f est dérivable et

[tex]f'(x)=\dfrac{e^x(e^x-1)-e^x(e^x-3)}{(e^x-1)^2}=\dfrac{x^{2x}-e^x-e^{2x}+3e^x}{(e^x-1)^2}\\\\=\dfrac{2e^x}{(e^x-1)^2}[/tex]

5. C'est vrai

car f'(x)>0 pour x>0

Merci