Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Explications étape par étape:
1)
[tex] \sqrt{ {x}^{2} + 1 } > \sqrt{ {x}^{2} } = |x| \\ \sqrt{ {x}^{2} + 1 - |x| } > |x| - |x| = 0[/tex]
donc A>0
[tex] \sqrt{ {x}^{2} + 1} > \sqrt{ {x}^{2} } = |x| \\ \sqrt{ {x }^{2} + 1 } + |x | > |x| + |x| = 2 |x| [/tex]
donc B>2|x|
2)
A*B =
[tex]( \sqrt{ {x}^{2} + 1 } - |x| )( \sqrt{ {x}^{2} + 1} + |x| ) = \\ { \sqrt{ {x}^{2} + 1 } }^{2} - { |x| }^{2} = \\ {x}^{2} + 1 - {x }^{2} = 1[/tex]
donc A=1/B
or B>2|x|
donc A<1/(2|x|)
3)
A>0
et A<1/(2|x|)
donc
[tex]0 < \sqrt{ {x}^{2} + 1} - |x| < \frac{1}{2 |x| } \\ |x| < \sqrt{ {x}^{2} + 1} < |x| + \frac{1}{2 |x| } [/tex]
4)
Pour x=11
[tex] |11| < \sqrt{ {11}^{2} + 1} < |11| + \frac{1}{2 |11| } \\ 11 < \sqrt{121 + 1} < 11 + \frac{1}{22} \\ 11 < \sqrt{122} < 11 + \frac{1}{22} \\ \frac{11}{3} < \frac{ \sqrt{122} }{3} < \frac{11}{3} + \frac{1}{66} [/tex]
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.