Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

bonjours je suis bloqué pour la question 3b jusqu'à la 4a pourriez vous m aider svp ?​

Bonjours Je Suis Bloqué Pour La Question 3b Jusquà La 4a Pourriez Vous M Aider Svp class=

Sagot :

Réponse :

3.b Montrer que Cf admet une tangente strictement parallèle à T(A) on notera cette tangente T(B)

tout d'abord il faut chercher  f '(3)  de la tangente T(A)

la dérivée de la fonction f  est  f '(x) = - 3 x² - 6 x + 24

donc  f '(3) = - 3*3² - 6*3 + 24 = - 27 - 18 + 24 = - 21

la tangente T(B) a pour équation  y = f(a) + f '(a)(x - a)

or  T(B) // T(A)  ce qui équivaut  f '(a) = f '(3) = - 21

⇔  f '(a) = - 3 a² - 6 a + 24 = - 21   ⇔ - 3 a² - 6 a + 45 = 0

Δ = 36 + 540 = 576  > 0 ⇒ deux racines distinctes  a1 et a2

√576 = 24

a1 = 6+24)/-6 = - 5

a2 = 6-24)/-6 = 3   or cette valeur  est l'abscisse  de T(A) au point A

donc la tangente T(B) à la courbe Cf  est au point d'abscisse - 5

donc  f '(- 5) = - 21

et  f(-5) = - (-5)³ - 3*(-5)² + 24*(-5) + 2

            = 125 - 75 - 120 + 2  = - 68

donc  y = - 68 - 21(x + 5) = - 21 x - 173

4.a  déterminer l'équation réduite de la tangente T(C) à Cf au point C d'abscisse - 1

f '(-1) = - 3*(-1)² - 6*(-1) + 24 = - 3 + 6 + 24 = 27

f(-1) = -(-1)³ - 3(-1)² + 24(-1) + 2 = 1 - 3 - 24 + 2 = - 24

donc  y = - 24 + 27(x + 1) = 27 x  + 3      

Explications étape par étape

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.