Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Réponse :
bonjour,
les droites (HI) et (FG) sont sécantes en G , les points H,G,I et F,G,J sont donc alignés, et le point d'inter Section est G, on peut appliquer la réciproque du théorème de Pythagore :
HG² = H F² + FG²
5² = HF² + 4²
HF² = 25 - 16
HF =√9
HF = 3
Je vérifie : 25 = 9 + 16
le carré de l'hypothénuse (HG) est égal à la somme des carrés des 2 autres côtés du triangle :
le triangle FGH est ien rectangle en F
Explications étape par étape
Hey !
Les droites (HI) et (FJ) sont sécantes en G.
Démontrer que le triangle FGH est rectangle en F.
1) On calcule la longueur HF
On reconnaît la configuration " papillon " de Thalès.
Les points H, G, I (respectivement F, G, J) sont alignés.
Les droites (HI) et (FJ) sont sécantes en G.
Les droites (HF) et (JI) sont parallèles (je suppose).
Le triangle FGH est l'image du triangle IJG par l'homothétie de centre G et de rapport k.
k = HG / GI = FG / GJ Soit 5 / 6 = 4 / 4,8 = 5 / 6
HF = k × IJ = 5 / 6 × 3,6 = 3 cm
On sait que :
HF = 3 cm
FG = 4 cm
HG = 5 cm
Pour pouver qu'un triangle est rectangle on applique la réciproque du théorème de Pythagore.
HG² = 5² = 25
HF² + FG² = 3² + 4² = 9 + 16 = 25
Donc HG² = HF² + FG²
D'après la réciproque du théorème de Pythagore, le triangle FGH est rectangle en F.
Bonne journée.
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.