Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Réponse :
Bonjour à toi,
QUESTION ①)
On a :
[tex]\vec{AB} (x_B - x_A ; y_B - y_A)\\\vec{AB} (-3 - 2 ; -6 - 2)\\\vec{AB} (-5 ; -8)\\\\\vec{AC} (x_C - x_A ; y_C - y_A)\\\vec{AC} (10 - 2 ; -3 - 2)\\\vec{AC} (8 ; -5)\\[/tex]
D'après la règle du parallélogramme,
[tex]\vec{DC} = \vec{AB}[/tex]
Donc :
[tex]\vec{DC}(-5;-8)[/tex]
[tex]x_{\vec{DC}} = x_C - x_D\\-> x_D = -x_{\vec{CD}} +x_C\\ -> x_D = +5+10\\ ->\large\boxed{\sf\df\ x_D = 15}[/tex]
[tex]y_{\vec{DC}} = y_C - y_D\\->y_D = -y_{\vec{CD}} +y_C\\ -> y_D = 8 -3\\ -> \large\boxed{\sf\df\ y_D = 5}[/tex]
Donc :
D(15;5)
QUESTION ②)
[tex]AB =\sqrt{(x_B-x_A)^2+(y_B-y_A)^2} \\AB =\sqrt{(-3-2)^2+(-6-2)^2}\\AB =\sqrt{(-5)^2+(-8)^2}\\ AB = \sqrt{89} \\\\ AC =\sqrt{(x_C-x_A)^2+(y_C-y_A)^2} \\AC=\sqrt{(10-2)^2+(-3-2)^2}\\AC=\sqrt{(8)^2+(-5)^2}\\ AC = \sqrt{89} \\\\ \\BC =\sqrt{(x_C-x_B)^2+(y_C-y_B)^2} \\BC=\sqrt{(10+3)^2+(-3+6)^2}\\BC=\sqrt{13^2+3^2}\\ BC= \sqrt{178}[/tex]
AB = AC donc ABC est un triangle isocèle
QUESTION ③)
Les coordonnées du milieu du segment de [BC] sont :
[tex]i(\frac{x_B + x_C}{2} ;\frac{y_B+y_C}{2})\\\\ ->(\frac{-3 + 10}{2} ;\frac{-6-3}{2})\\-> (\frac{7}{2} ;\frac{-9}{2})\\-> (3,5;-4,5)[/tex]
QUESTION ④)
[tex]\vec{CD}(x_D-x_C;y_D-y_C)\\ \vec{CD}(15-10;5+3)\\ \vec{CD}(5;8})\\ \\ \vec{IA}(x_A-x_I;y_A-y_I)\\ \vec{IA}(2-3,5;2+4,5)\\ \vec{IA}(-1,5;6,5})[/tex]
On a :
[tex]\vec{CD} +\vec{IA}\\ \\ -> (x_{\vec{CD}}+x_{\vec{IA}};y_{\vec{CD}}+y_{\vec{IA}})\\ ->(5-1,5;8+6,5)\\ ->(3,5;14,5)\\[/tex]
L’égalité [tex]\vec{BJ} = \vec{CD} + \vec{IA}[/tex] se traduit par :
[tex]x_{\vec{BJ}} = 4,5\\-> x_J = x_{\vec{BJ}} +x_B\\ -> x_J = 3,5-3\\ ->\large\boxed{\sf\df\ x_J = 0,5}[/tex]
[tex]y_{\vec{BJ}} = 14,5\\-> y_J = x_{\vec{BJ}}+y_B\\ -> y_J = 14,5 - 6\\ ->\large\boxed{\sf\df\ y_J =8,5 }[/tex]
Donc :
J(0,5;8,5)
QUESTION ⑤)
A est le milieu de [IJ] si et seulement si :
[tex]A(\frac{x_I+x_J}{2};\frac{y_I+y_J}{2}) \\ \\->A(\frac{3,5+0,5}{2};\frac{8,5-4,5}{2})\\->A(\frac{4}{2};\frac{4}{2})\\->\large\boxed{\sf\df\ A(2;2)}[/tex]
Donc A est bien le milieu de [IJ]
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.