Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour , s'il vous plait pouvez vous m'aidere: Démontrer que le carré d'un nombre impair est toujours impair

Sagot :

Vins

Réponse :

bonjour

un nombre impair se note  2 n + 1

( 2 n + 1 ) ² = 4 n² + 4 n + 1   donc impair

Explications étape par étape

Hey !

Un nombre impair s'écrit sous la forme 2n + 1.

Le carré d'un nombre impair : (2n + 1)²

Développons et réduisons :

(2n + 1)²

= 4n² + 4n + 1

4n² ⇔ le résultat est toujours pair.

4n ⇔ le résultat est toujours pair.

Résultat pair + Résultat pair + 1 = Résultat impair

Bonne journée.

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.