Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonsoir j’ai besoin d’aide


Merci

Bonsoir Jai Besoin Daide Merci class=

Sagot :

Réponse :

Explications étape par étape

Bonsoir

Developper et réduire :

A = (-7x - 2)^2

A = 49x^2 + 28x + 4

B = (3x - 1)(2 - 5x)(x + 7)

B = (6x - 15x^2 - 2 + 5x)(x + 7)

B = (-15x^2 + 11x - 2)(x + 7)

B = -15x^3 - 105x^2 + 11x^2 + 77x - 2x - 14

B = -15x^3 - 94x^2 + 75x - 14

C = -2x(4 - 3x)^2

C = -2x(16 - 24x + 9x^2)

C = -32x + 48x^2 - 18x^3

D = [-2x(4 - 3x)]^2

D = [-2x(16 - 24x + 9x^2)]

D = -32x + 48x^2 - 18x^3

E = (1 - 2x * 10^5)^2

E = 1 - 4x*10^5 + 4x^2*10^10

F = (3y - 2)^2(2x + 3)^2

F = (9y^2 - 12y + 4)(4x^2 + 12x + 9)

F = 36x^2y^2 + 108xy^2 + 81y^2 - 48x^2y - 144xy - 108y + 16x^2 + 48x + 36

G = (n + 1)(n - 2)(n + 3)(n - 4)(n + 5)

G = (n^2 - 2n + n - 2)(n^2 - 4n + 3n - 12)(n + 5)

G = (n^2 - n - 2)(n^2 - n - 12)(n + 5)

G = (n^4 - n^3 - 12n^2 - n^3 + n^2 + 12n - 2n^2 + 2n + 24)(n + 5)

G = (n^4 - 2n^3 - 13n^2 + 14n + 24)(n + 5)

G = n^5 + 5n^4 - 2n^4 - 10n^3 - 13n^3 - 65n^2 + 14n^2 + 70n + 24n + 120

G = n^5 + 3n^4 - 23n^3 - 51n^2 + 94n + 120

H = (1 - 2x)^3

H = 1 - 6x + 4x^2

I = (x/3 - 2/7)^2 - 5x/3(x/7 - 1)

I = x^2/9 - 4x/21 + 4/49 - 5x^2/21 + 5x/3

I = (x^2 * 7)/(9 * 7) - (5x^2 * 3)/(21 * 3) - 4x/21 + (5x * 7)/(3 * 7) + 4/49

I = 7x^2/63 - 15x^2/63 - 4x/21 + 35x/21 + 4/49

I = -8x^2/63 + 31x/21 + 4/49

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.