Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Je n’arrive pas à résoudre l’équation sin(3x)=1/2 dans l’intervalle ]-pi;pi]

Sagot :

Réponse :

Explications étape par étape

Bonjour,

Pour résoudre une équation trigonométrique, il suffit d'avoir le même nombre trigonométrique dans le membre de gauche et dans le membre de droite.

Quand c'est le cas, on fait une égalité entre les arguments

1) Transformer le membre de droite par sin(quelque chose)

[tex]\frac{1}{2}=sin(\frac{\pi}{6} + 2.k.\pi )[/tex] ou [tex]\frac{1}{2} = sin(\frac{5\pi }{6} + 2 k\pi )[/tex]

Tu remarqueras certainement le [tex]2k\pi[/tex], k est un nombre entier qui permet d'ajouter (ou retirer) des tours de cercle trigonométrique.

Commençons par la première possibilité, on aura donc :

[tex]sin(3x) = sin(\frac{\pi }{6} + 2k\pi )[/tex]

<=> [tex]3x = \frac{\pi}{6} + 2k\pi[/tex]

<=> [tex]x = \frac{\pi }{18} + \frac{2k\pi }{3}[/tex]

<=> [tex]x = \frac{\pi }{18}[/tex] ou [tex]x = \frac{\pi }{18} + \frac{2\pi }{3} = \frac{\pi }{18} + \frac{12\pi }{18} = \frac{13\pi }{18}[/tex] ou [tex]x = \frac{\pi }{18} - \frac{2\pi }{3} = \frac{\pi }{18}-\frac{12\pi }{18}=\frac{-11\pi }{18}[/tex]

Si on considère la deuxième possibilité, on aura donc :

[tex]sin(3x) = sin(\frac{5\pi }{6} +2k\pi )[/tex]

<=> [tex]3x = \frac{5\pi }{6}+2k\pi[/tex]

<=> [tex]x = \frac{5\pi }{18} + \frac{2k\pi }{3}[/tex]

<=> [tex]x = \frac{5\pi }{18}[/tex] ou [tex]x=\frac{5\pi }{18}+\frac{2\pi }{3} = \frac{5\pi }{18}+\frac{12\pi }{18} = \frac{17\pi }{18}[/tex] ou [tex]x = \frac{5\pi }{18} - \frac{2\pi }{3} = \frac{5\pi }{18}-\frac{12\pi }{18}=\frac{-7\pi }{18}[/tex]

Solution : {[tex]\frac{-11\pi }{18} ; \frac{-7\pi }{18} ; \frac{\pi }{18} ; \frac{5\pi }{18} ; \frac{13\pi }{18} ; \frac{17\pi }{18}[/tex]}

J'espère que cette réponse t'aura été utile ;)

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.