Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Réponse :
Bonjour, je vais t'aider à résoudre cet exercice. Il est toujours très important de relever les indices donnés par l'énoncé ainsi que de faire le dessin de la situation (voir pièce jointe).
Explications étape par étape
1) Nous allons partir de la relation vectorielle donnée dans le texte:
GA+GB+GC=0
GA+GA+AB+GA+AC=0 (on introduit A par la relation de Chasles)
3GA+AB+AC=0
3AG=AB+AC
AG=(1/3)(AB+AC)---->CQFD
2)a) On sait que ABDC est un parallélogramme donc on peut écrire vectoriellement que:
AB=CD
AB=CA+AD
AB+AC=AD---->CQFD
On continue la démonstration avec:
AB+AC=AD
AB+AC=AA'+A'D
A' est le centre de AD car A' est le symétrique de A par rapport à D donc on a A'D=AA' d'où:
AB+AC=AA'+AA'
AB+AC=2AA'---->CQFD
b)On prends la relation vectorielle trouvée au 1:
AG=(1/3)(AB+AC)
AG=(1/3)(2AA') car AB+AC=2AA' (voir question précédente)
AG=(2/3)AA'----> CQFD
3) A mon avis, tu as mal copié cette question, tu voulais parler de A G et A'.
Comme on a la relation AG=(2/3)AA' donc les 3 points A, A' et G sont alignés.
4) On reprend la relation vectorielle du départ:
GA+GB+GC=0
GB+BA+GB+GB+BC=0
3GB+BA+BC=0
3BG=BA+BC
BG=(1/3)(BA+BC)
BG=(1/3)(BB'+B'A+BB'+B'C)
BG=(1/3)(2BB'+B'A+B'C)
Comme B' est le milieu de [AC] donc B'C+B'A=0 donc
BG=(1/3)(2BB')
BG=(2/3)BB'----->CQFD
On reprend la relation vectorielle du départ:
GA+GB+GC=0
GC+CA+GC+CB+GC=0
3GC+CA+CB=0
3CG=CA+CB
CG=(1/3)(CA+CB)
CG=(1/3)(CC'+C'A+CC'+C'B)
CG=(1/3)(2CC'+C'A+C'B)
Comme C' est le milieu de AB alors C'A+C'B=0 donc
CG=(1/3)(2CC')
CG=(2/3)CC'----> CQFD
5) D'après les question précédentes, nous avons les 3 relations vectorielles suivantes:
AG=(2/3)AA'
BG=(2/3)BB'
CG=(2/3)CC'
Ces 3 relations vectorielles montrent que le point G appartient à trois droites qui sont issues d'un sommet du triangle ABC et qui coupent le côté opposé à chaque sommet en son milieu. G appartient donc aux 3 médianes du triangle ABC.
6) Le centre de gravité G est la point d'application du poids (ou force de gravité).
Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.