Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Bonjour es ce que vous pouvez m'aider je n'arrive pas l'exercice 1.
Merci


Exercice 1 : On considére le triangle ci contre


ABC est un triangle rectangle isocéle en A tel que AB=3m

M est point du segement [AC] , N de [BC] et P de [AB] tels que AMNP forme un rectangle .


On note x la longueur du segment [AM] en métres et A(x) l’aire du rectangle AMNP en m² .


1) expliquer pourquoi x varie entre 0 et 3

Autrement dit , l’ensemble de définition de la fonction A est Da = [0;3]

2) a) Exprimer MN la fonction de x en démontrant la réponse.

b) Montrer que l’expression développée de A(x) est A(x) = -x² + 3x .

c) montrer que A (x) = - (x- 1,5)² + 2,25 en développant cette expression .

3) a) Calculer l’aire A (x) lorsque AM = 1 m.

b) Determiner pour quelle(s) valeur(s) de x l’aire A(x) est de 0,25 m² .

c) Montrer que 2,25 est le maximum de A atteint pour x =1,5

d) En s’aidant de la calculatrice , établir le tableau de variations de A sur [0;3] .


Bonjour Es Ce Que Vous Pouvez Maider Je Narrive Pas Lexercice 1MerciExercice 1 On Considére Le Triangle Ci Contre ABC Est Un Triangle Rectangle Isocéle En A Tel class=

Sagot :

Réponse :

1) x ne peut pas dépasser 3 car AM < AC

2) a)Thalès dans les triangles CAB et CMN ....   tu obtiens :  MN = 3 - x

2) b)  A(x) = long * largeur = MN× AM = (3-x) × x  = ...

2) c)  tu développes - ( x-1,5)² + 2,25    et tu tombes sur  -x² + 3x

3) a) si AM = 1   alors  x = 1    donc  A(x) = -1² + 3×1 = 2 m²

3) b) tu utilises l'expression de A(x) donnée en question 2c) :  A(x) = 0,25  abouti à l'équation :  (x-1,5)² = 2     donc  x-1,5 = √2   OU  x-1,5 = -√2  

donc   x = √2  + 1,5  ≈ 2,914    OU    x = -√2 + 1,5 = 0,086

3) c) puisque A(x) = -(x-1,5)² + 2,25     la valeur x=1,5 est le max  (voir ton cours)   donc le maximum est  A(1,5) = 2,25

3) d)  sur [0;1,5]  A est croissante  et sur  [1,5 ; 3] elle est décroissante

Explications étape par étape

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.