Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjour, j'ai vraiment besoin d'aide...


Montrer que si les suites extraites (u3n), (u3n+1) et (u3n+2) convergent vers la

même limite, alors (un) converge


Pour l'instant j'ai fais ça :

(u3n) converge vers l : Pour tout epsilon >0, il existe N appartient IN , I u3n-l I <= epsilon

Pareil pour u3n +1 et u3n+2 avec N' et N'', mais ensuite je dois trouver si n est pair ou impair dans chacun des cas j'imagine, et c'est là que je bloque :/


Sagot :

Tenurf

Bjr,

En fait les ensembles des entiers de la forme (3n), (3n+1), (3n+2) forment une partition de tous les entiers, d'aprés les propriétés de la division euclidienne.

Pour tout n entier il existe un entier k tel que n=3k, ou n=3k+1 ou n=3k+2.

Notons l la limite commune et écrivons la définition de la convergence des suites extraites

[tex](\forall \varepsilon >0) (\exists n_0 \in \mathbb{N}); (\forall n \in \mathbb{N}); (n \geq n_0 => |u_{3n}-l|<\varepsilon)[/tex]

[tex](\forall \varepsilon >0) (\exists n_1 \in \mathbb{N}); (\forall n \in \mathbb{N}); (n \geq n_1 => |u_{3n+1}-l|<\varepsilon)[/tex]

[tex](\forall \varepsilon >0) (\exists n_2 \in \mathbb{N}); (\forall n \in \mathbb{N}); (n \geq n_2 => |u_{3n+2}-l|<\varepsilon)[/tex]

Prenon un epsilon quelconque, et posons

[tex]N=max(3n_0,3n_1+1,3n_2+2)[/tex], du coup

[tex](\forall n \in \mathbb{N}); (n \geq N => |u_{n}-l|<\varepsilon)[/tex]

Et c'est la définition de la convergence de (un) vers l.

De ce fait, la suite (un) converge vers la même limite l.

Merci

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.