Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Bonjour, j'ai vraiment besoin d'aide...


Montrer que si les suites extraites (u3n), (u3n+1) et (u3n+2) convergent vers la

même limite, alors (un) converge


Pour l'instant j'ai fais ça :

(u3n) converge vers l : Pour tout epsilon >0, il existe N appartient IN , I u3n-l I <= epsilon

Pareil pour u3n +1 et u3n+2 avec N' et N'', mais ensuite je dois trouver si n est pair ou impair dans chacun des cas j'imagine, et c'est là que je bloque :/


Sagot :

Tenurf

Bjr,

En fait les ensembles des entiers de la forme (3n), (3n+1), (3n+2) forment une partition de tous les entiers, d'aprés les propriétés de la division euclidienne.

Pour tout n entier il existe un entier k tel que n=3k, ou n=3k+1 ou n=3k+2.

Notons l la limite commune et écrivons la définition de la convergence des suites extraites

[tex](\forall \varepsilon >0) (\exists n_0 \in \mathbb{N}); (\forall n \in \mathbb{N}); (n \geq n_0 => |u_{3n}-l|<\varepsilon)[/tex]

[tex](\forall \varepsilon >0) (\exists n_1 \in \mathbb{N}); (\forall n \in \mathbb{N}); (n \geq n_1 => |u_{3n+1}-l|<\varepsilon)[/tex]

[tex](\forall \varepsilon >0) (\exists n_2 \in \mathbb{N}); (\forall n \in \mathbb{N}); (n \geq n_2 => |u_{3n+2}-l|<\varepsilon)[/tex]

Prenon un epsilon quelconque, et posons

[tex]N=max(3n_0,3n_1+1,3n_2+2)[/tex], du coup

[tex](\forall n \in \mathbb{N}); (n \geq N => |u_{n}-l|<\varepsilon)[/tex]

Et c'est la définition de la convergence de (un) vers l.

De ce fait, la suite (un) converge vers la même limite l.

Merci

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.