Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour pouvez vous m’aider à résoudre dans R ces inéquations :

2<=x^2<=9 ; 16>x^2>O ; x^2>=-4


Sagot :

Bonjour !

2 ≤ x² ≤ 9

<=> √(2) ≤ |x| ≤ 3

√(2) ≤ |x| :

donc x ≥ √(2) ou x ≤ -√(2)

Donc x ∈ ]-∞ ; -√(2)] U [√(2) ; +∞[ ?

Non : car également, |x| ≤ 3.

Donc x ≤ 3 et x ≥ -3.

Donc x ∈ [-3 ; 3] ?

Non : vu que c'est 2 ≤ x² ≤ 9 donc 2 ≤ x² ET x² ≤ 9, l'ensemble des solutions est :

S = ]-∞ ; -√(2)] U [√(2) ; +∞[ ∩ [-3 ; 3]

= [-3 ; -√(2)] U [√(2) ; 3]

16 > x² > 0

<=> 0 < |x| < 4

0 < |x| : S = R*

|x| < 4 : S = ]-4 ; 4[

Donc :

16 > x² > 0 :

S = R* ∩ ]-4 ; 4[

= ]-∞ ; 0[ U ]0 ; +∞[ ∩ ]-4 ; 4[

= ]-4 ; 0[ U ]0 ; 4[

x² ≥ -4

/!\ un carré ne peut pas être négatif, donc dire que x² ≥ -4 revient à dire que x² ≥ 0.

<=> |x| ≥ 0

Donc x ≥ 0 ou x ≤ 0.

Donc :

x² ≥ -4 : S = R

Voilà !

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.