Answered

Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjour,

Le menuisier dispose d'une chute de plaque de bois dans laquelle il veut découper un rectangle le plus grand possible. Ce morceau de plaque a la forme d'un triangle ABC rectangle en A avec AB = 8 dm et AC = 6 dm .

Le menuisier prendra un point M du segment [AB] et (MN) parallèle a (AC).

Pour l'étude du problème, on pose am = x

1.On suppose que x = 6

a. Combien mesure BM ?

b. En utilisant la propriété de Thalès, calculer la longueur MN

c. Déduisez de ce calcul l'aire du rectangle AMNP



Bonjour Le Menuisier Dispose Dune Chute De Plaque De Bois Dans Laquelle Il Veut Découper Un Rectangle Le Plus Grand Possible Ce Morceau De Plaque A La Forme Dun class=

Sagot :

Thalés dit que MN/6 vaut BM/8

si AM=6 alors BM=8-AM vaut 2 et on a MN=3/2

AMNP a pour aire (3/2)*6 soit 9

 

généralement MN=(3/4)(8-x) donc aire de AMNP est (3/4)x(8-x)

 

la plus grande valeur de cette fonction de x sera 12 obtenue pour x=4 (de tous les rectangles de même ^périmétre, le plus grand en aire est le carré, soit x=8-x ou x=4)

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.