Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonsoir pourriez-vous m’aider , pour cette exercice qui me pose une colle ;)

Bonsoir Pourriezvous Maider Pour Cette Exercice Qui Me Pose Une Colle class=

Sagot :

Tenurf

Bjr,

1.a. ben, faisons les calculs, en mettant sur le même dénominateur

[tex]u_{n+1}-u_n=\dfrac{1}{(n+1)(n+2)}-\dfrac{1}{n(n+1)}\\\\=\dfrac{n-(n+2)}{n(n+1)(n+2)}\\\\=\dfrac{n-n-2}{n(n+1)(n+2)}\\\\=-\dfrac{2}{n(n+1)(n+2)}[/tex]

b. n est un entier donc positif, n+1 est positif, n+2 est positif donc le produit n(n+1)(n+2) est positif, ainsi l'expression trouvée à la question précédente est négative, donc la suite [tex](u_n)[/tex] est décroissante.

c. en calculant les premiers termes, ça a tout l'air de tendre vers 0

2. a. pour n entier non nul

[tex]\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-n}{n(n+1)}=\dfrac{1}{n(n+1)}=u_n[/tex]

b.

Utilisons le résultat du a.

[tex]S_p=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\cdots+\dfrac{1}{p}-\dfrac{1}{p+1}\\\\=1-\dfrac{1}{p+1}[/tex]

les termes se télescopent, ils s'éliminent deux à deux et il ne reste que le premier et le dernier.

c. La somme à calculer est

[tex]S_{99}=1-\dfrac{1}{100}=0,99[/tex]

d. A mon avis, cette suite tend vers 1.

Merci

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.