Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour, j’ai besoin d’aide svp pour cet exercice.

Déterminer la forme factoriser sur les polynômes du second ou du troisième degrés suivants, en détaillant cla methode pour l’un d’entre eux :
a) f(x) = -2x² + 6x - 2
b) g(x) = 2x²- 4x - 30
c) h(x) = x³ -4x² -7x + 10
d) i(x) = 2x³ - 4x² -10x + 12

Merci


Sagot :

Réponse :

Bonjour

Explications étape par étape

a)

Difficile de répondre sans savoir si tu sais chercher les racines de :

-2x²+6x-2=-2(x²-3x+1)avec :

Δ=b²-4ac=(-3)²-4(1)(1)=5

x1=(3-√5)/2 et x2=(3+√5)/2

f(x)=-2[x-(3-√5)/2][x-(3+√5)/2]

que tu peux arranger.

b)

Tu utilises la même technique avec :

g(x)=2(x²-2x-15)

et tu vas trouver :

g(x)=2(x+3)(x-5)

c)

x=1 est racine évidente car h(1)=0.

Donc :

x³-4x²-7x+10=(x-1)(ax²+bx+c)

Tu développes à droite et à la fin , tu as :

x³-4x²-7x+10=ax³+x²(b-a)+x(c-b)-c

Par identification gauche et droite :

a=1

b-a=-4 ==>b=-4+a

b=-3

c-b=-7 ==>c=-7+b

c=-10

-c=10 ==>c=-10

Donc :

x³-4x²-7x+10=(x-1)(x²-3x-10)

Il faut les racines de x²-3x-10 .

Tu vas trouver : x²-3x-10=(x+2)(x-5)

Donc :

h(x)=(x-1)(x+2)(x-5)

d)

i(x)=2(x³-2x²-5x+6)

x=1 est aussi racine car i(1)=0.

x³-2x²-5x+6=(x-1)(ax²+bx+c)

Tu fais comme ci-dessus et à la fin :

x³-2x²-5x+6=(x-1)(x²-x-6)

Tu cherches les racines de : x²-x-6.

A la fin :

i(x)=2(x-1)(x+2)(x-3)

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.