Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour ,J'ai besoin d'aide , je ne sais pas comment faire
Cinq nombres entiers consécutifs sont tels que la somme des carrés des deux plus grands
est égale à la somme de carrés des trois autres.
On choisit pour inconnue le nombre n1 qui désigne le premier nombre de cette suite.
Traduire la situation par une équation de degré 2 d’inconnue n1.
Écrire les quatre autres équations que l’on peut obtenir en prenant pour inconnue
successivement n2, le deuxième nombre de la suite, puis
n3, le troisième nombre de la suite
n4, le quatrième nombre de la suite
n5, le cinquième nombre de la suite
Choisir la « meilleure » équation pour déterminer la valeur de chacun de ces cinq
nombres.


Sagot :

bonjour je ne suis pas sur mais je crois que c’est ça;
ps:**2 c’est a la puissance 2
n1=x n2=x+1 n3=x+2 n4=x+3 et n5=x+4
(x+3)**2 +(x+4)**2=x**2+(x+1)**2+(x+2)**2
et vous continuez

Réponse :

soit n1

on a :

n2 = n1 + 1

n3 = n2 + 1 = n1 + 2

n4 = n1 + 3

n5 = n1 +4

on sait que:       n4² + n5² = n1² + n2² + n3²

 alors   (n1 + 3)² + (n1 +4)² = n1² +(n1 + 1)² + (n1 + 2)²

 <=>     n1² +6n1 + 9 + n1² + 8n1 + 16 = n1² + n1² + 2n1 + 1 + n1² + 4n1 + 4

 <=>    2n1²  + 14n1 + 25  = 3n1² + 6n1 + 5

 <=>     n1²  - 8n1 - 20 = 0

 je factorise l'expression afin de résoudre l'équation

(n1 - 4)² -16 -20 = 0

<=> (n1 - 4)² - 6² =0

<=> (n1 - 4 -6)(n1 -4 +6) = 0

<=> (n1 - 10)(n1 +2) =0

c'est  une équation à facteur nul

alors

n1 - 10 = 0                           ou   n1 + 2 = 0

n1 = 10                                ou   n1 = -2        or n1 est nombre entier

donc la seule solution à l'équation est n1 = 10

alors par conséquent n2 = 11, n3 = 12, n4= 13, et n5 = 14

j'espère avoir aidé.

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.