Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonjour ,J'ai besoin d'aide , je ne sais pas comment faire
Cinq nombres entiers consécutifs sont tels que la somme des carrés des deux plus grands
est égale à la somme de carrés des trois autres.
On choisit pour inconnue le nombre n1 qui désigne le premier nombre de cette suite.
Traduire la situation par une équation de degré 2 d’inconnue n1.
Écrire les quatre autres équations que l’on peut obtenir en prenant pour inconnue
successivement n2, le deuxième nombre de la suite, puis
n3, le troisième nombre de la suite
n4, le quatrième nombre de la suite
n5, le cinquième nombre de la suite
Choisir la « meilleure » équation pour déterminer la valeur de chacun de ces cinq
nombres.


Sagot :

bonjour je ne suis pas sur mais je crois que c’est ça;
ps:**2 c’est a la puissance 2
n1=x n2=x+1 n3=x+2 n4=x+3 et n5=x+4
(x+3)**2 +(x+4)**2=x**2+(x+1)**2+(x+2)**2
et vous continuez

Réponse :

soit n1

on a :

n2 = n1 + 1

n3 = n2 + 1 = n1 + 2

n4 = n1 + 3

n5 = n1 +4

on sait que:       n4² + n5² = n1² + n2² + n3²

 alors   (n1 + 3)² + (n1 +4)² = n1² +(n1 + 1)² + (n1 + 2)²

 <=>     n1² +6n1 + 9 + n1² + 8n1 + 16 = n1² + n1² + 2n1 + 1 + n1² + 4n1 + 4

 <=>    2n1²  + 14n1 + 25  = 3n1² + 6n1 + 5

 <=>     n1²  - 8n1 - 20 = 0

 je factorise l'expression afin de résoudre l'équation

(n1 - 4)² -16 -20 = 0

<=> (n1 - 4)² - 6² =0

<=> (n1 - 4 -6)(n1 -4 +6) = 0

<=> (n1 - 10)(n1 +2) =0

c'est  une équation à facteur nul

alors

n1 - 10 = 0                           ou   n1 + 2 = 0

n1 = 10                                ou   n1 = -2        or n1 est nombre entier

donc la seule solution à l'équation est n1 = 10

alors par conséquent n2 = 11, n3 = 12, n4= 13, et n5 = 14

j'espère avoir aidé.

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.