Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Je dois rendre cet exercices lundi quelqu’un pourrais m’aidez svp
Niveau seconde


Je Dois Rendre Cet Exercices Lundi Quelquun Pourrais Maidez Svp Niveau Seconde class=

Sagot :

Réponse :

Bonjour

Explications étape par étape

1)

a)

La technique de calcul pour vect AB(xB-xA;yB-yA).

AB(3-(-9;5-7) soit AB(12;-2)

De même , tu vas trouver :

CD(-12;2) qui donne : DC(12;-2)

b)

Donc en vecteurs :

AB=DC qui prouve que ABCD est un parallélo.

2)

a)

Formule :

xM=(xA+xB)/2 et de même pour yM.

Tu trouves :

M(-3;6)

N est donc milieu de [DC]. Tu appliques la formule.

N(2;-1)

b)

MD(-4-(-3);0-6) ==>MD(-1;-6)

BN(2-3;-1-5) ==>BN(-1;-6)

det(MD,BN)=(-1)(-6)-(-6)(-1)=6-6=0

Donc (MN) // (BN)

c)

vect BM(-6;1)  ==>norme BM=√((-6)²+1²)=√37

vect BN(-1;-6) ==>norme BN=√((-1)²+(-6)²)=√37

vect MN(2-(-3);-1-6) soit vect MN(5;-7) ==>norme MN=√(5²+(-7)²)=√74

d)

Donc :

BM²+BN²=37+37=74

MN²=74

Donc :

MN²=BM²+BN² qui prouve d'après la réciproque de Pythagore que MBN est rectangle-isocèle en M.

e)

En 2)b) on a établi que :

vect MD= vect BN qui prouve que MBND est un parallélo.

De plus on vient d'établir que , en mesures : MB=BN donc : le parallélo MBND est un losange car il a 2 côtés consécutifs de même mesure.

Mais l'angle MBN est droit donc le losange MBND est un carré.

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.