Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonjour,
Je pourrais te donner les résultats et tu recopies sans te poser de questions mais cela ne t'apporterait rien et comme tu recherches de l'aide je vais essayer d'expliquer et te laisser faire par toi même le reste.
Tu sais que l'intégrale de f sur le segment [a;b] représente l'aire algébrique contenue entre la courbe représentative de f : y=f(x), l'axe des abscisses et les droites x=a et x=b
En piece jointe, j'ai tracé la fonction du premier exo.
C'est évidemment un quart de cercle car
[tex]x^2+y^2=1 => y=\sqrt{1-x^2}[/tex]
et tu reconnais dans l'expression à gauche l'équation d'un cercle de centre O et de rayon 1.
De ce fait, l'intégrale est exactement l'aire du quart de cercle de rayon 1, à savoir
[tex]\dfrac{\pi}{4}[/tex]
Une autre manière de voir cela est de faire le changement de variable t= cos(u). La fonction t qui à u de [0; [tex]\pi/2[/tex]] associe t(u)=cos(u) dans [0;1]
t est définie sur un intervalle vers un intervalle de IR, t est dérivable est de dérivé intégrable, De plus la fonction qui à t associe [tex]\sqrt{1-t^2}[/tex]
est une fonction continue sur [0;1] ainsi nous pouvons utiliser ce changement de variable est
[tex]\displaystyle \int_0^1 \sqrt{1-t^2} dt = \int_0^{\pi/2} \sqrt{1-cos^2(u)} \times sin(u)du\\\\= \int_0^{\pi/2} sin^2(u)du\\\\= \int_0^{\pi/2} \dfrac{1-cos(2u)}{2} du \\\\=\dfrac{\pi}{4}-[\dfrac{sin(2u)}{4}]_0^{\pi/2}\\\\=\dfrac{\pi}{4}[/tex]
Heureusement, on arrive au même résultat.
Les deux autres sont beaucoup plus simples.
A toi de jouer.
Merci
Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.