Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Bonjour,
2) a) On utilise le théorème de Pythagore :
MD² = 20² + OM²
soit MD² = 20² + x²
[tex]MD = \sqrt{20^{2} +x^{2} }[/tex]
Et la longueur MF est égale à l'ordonnée au point M, c'est-à-dire à f(x).
L'équation à poser est donc
[tex]\sqrt{20^{2} +x^{2}} = f(x)\\\\ \sqrt{20^{2} +x^{2}} =0,6x+20[/tex]
b) 400 + x² = (20+0.6x)²
400 + x² = 20² + 2*20*0.6x + (0.6x)²
400 + x² = 400 + 24x + 0.36x²
x² - 0.36x² - 24x = 400 - 400
0.64x² - 24x = 0
On calcule le discriminant :
Δ = b² - 4ac
= (-24)² - 4*0.64*0
= 576
Δ>0 donc 2 solutions réelles
x1 = (-b-√Δ)/2a = (24 - √576)/(2*0.64) = 0
x2 = (-b+√Δ)/2a = (24 + √576)/(2*0.64) = 48/1.28 = 37.5
On retient donc x2 = 37.5
On pourrait vérifier que les solutions trouvées sont également solutions de l'équation du 1).
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.