Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

On considère le programme de calcul suivant :
Choisir un nombre;
Ajouter 7 à ce nombre;
Soustraire 7 au nombre choisi au départ;
Multiplier les deux résultats précédents;
Ajouter 50.
1. Montrer que si le nombre choisi au départ est 2, alors le résultat obtenu est
5.
2. Quel est le résultat obtenu avec ce programme si le nombre choisi au
départ est -10?
3. Un élève s'aperçoit qu'en calculant le double de 2 et en ajoutant 1, il
obtient 5, le même résultat que celui qu'il a obtenu à la question 1.
Il pense alors que le programme de calcul revient à calculer le double
du nombre de départ et à ajouter 1.
A-t-il raison?
4- On appelle x le nombre de départ écrire la formule et démontrer qu'elle est
égale à x²+1
merci à ceux qui m'aideront ​


Sagot :

Bonsoir

On considère le programme de calcul suivant :

Choisir un nombre;

Ajouter 7 à ce nombre;

Soustraire 7 au nombre choisi au départ;

Multiplier les deux résultats précédents;

Ajouter 50.

1. Montrer que si le nombre choisi au départ est 2, alors le résultat obtenu est  5.

Choisir un nombre;

2

Ajouter 7 à ce nombre;

2 + 7 = 9

Soustraire 7 au nombre choisi au départ;

2 - 7 = - 5

Multiplier les deux résultats précédents;

9 * (- 5) = - 45

Ajouter 50.

- 45 + 50 = 5

2. Quel est le résultat obtenu avec ce programme si le nombre choisi au

départ est -10 ?

Choisir un nombre;

- 10

Ajouter 7 à ce nombre;

- 10 + 7 = - 3

Soustraire 7 au nombre choisi au départ;

- 10 - 7 = - 17

Multiplier les deux résultats précédents;

- 3 * (- 17) = 51

Ajouter 50.

51 + 50 = 101

3. Un élève s'aperçoit qu'en calculant le double de 2 et en ajoutant 1, il

obtient 5, le même résultat que celui qu'il a obtenu à la question 1.

Il pense alors que le programme de calcul revient à calculer le double

du nombre de départ et à ajouter 1.  A-t-il raison ?

Non cet élève a tort, il ne s'agit pas du double du nombre de départ mais de son carré.

4- On appelle x le nombre de départ écrire la formule et démontrer qu'elle est  égale à x²+1 :

Choisir un nombre;

x

Ajouter 7 à ce nombre;

x + 7

Soustraire 7 au nombre choisi au départ;

x - 7

Multiplier les deux résultats précédents;

(x + 7) (x - 7) = x² - 49

Ajouter 50.

x² - 49 + 50 = x² + 1.

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.