Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Aider moi svp!!!
Je n'arrive pas avec la relation de récurrences


Aider Moi Svp Je Narrive Pas Avec La Relation De Récurrences class=

Sagot :

Réponse :

Initialisation et récurrence

Explications étape par étape

Initialisation

vérifions que l'inégalité est vraie au 1er rang (n=1):

U1 = (3 - 1) / 1 = 2

Vérifions si l'inégalité est vraie pour 2:

Elle sera vraie <=> 2/rac2 <= 2 <= 4/rac2

<=> 2 <= 2rac2 <= 4 (nombres positifs, on peut passer tous les membres au carré en conservant le sens de l'inégalité)

<=> 4 <= 8 <= 16, ce qui est vrai.

Donc l'inégalité est vraie au rang n=1

Récurrence.

Supposons que l'inég est vraie au rang n, montrons qu'elle sera vraie au rang n+1:

l'inégalité au rang n peut s'écrire:

2/racn <= (3+(-1)^n)/racn <= 4/racn on peut multiplier par racn qui est positif:

<=> 2 <= 3+(-1)^n <= 4

<=> -1 <= (-1)^n <= 1

Multiplions par (-1):

l'inégalité donne (on inverse les sens des inégalités puisqu'on multiplie par un négatif):

1 >= (-1)^(n+1) >= -1 ce qui s'écrit dans l'autre sens:

-1 <= (-1)^(n+1) <= 1

ce qui correspond à l'inégalité au rang n+1:

2/rac(n+1)<= (3+(-1)^(n+1))/rac(n+1)

Donc l'inégalité est vraie au rang n+1 si elle est vraie au rang n.

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.