Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

bonjour pourriez vous m'aider svp?
Exercice 2
Soit f et g deux fonctions définies sur [-2;2] par f(x) = x⁴ − 2x² et g(x) =x³ − 3x.
1. Montrer que f est paire.
2. Montrer que g est impaire.


Sagot :

ayuda

bjr

une fonction f(x) est paire si f(-x) = f-x)

donc on va calculer f(-x)

on aura donc

f(-x) = (-x)⁴ - 2 (-x)²

      = x⁴ - 2x²

f(-x) = f(x)

=> f(x) est paire => axe de symétrie pour sa courbe f

et g(x) est impaire g(-x) = - g(x)

on va donc calculer g(-x)

on aura donc

g(-x) = (-x)³ - 3 * (-x) = - x³ + 3x = - (x³ - 3x) = - g(x)

=> g(x) est impaire

Vins

Réponse :

bonjour

f (x) = x ⁴ - 2 x²

une fonction est paire si  f ( - x) = f ( x)

f ( - x ) = ( - x ) ⁴ - 2 ( - x) ² = x ⁴ - 2 x²  donc paire

g (x) = x ³ - 3 x

une fonction est impaire si  g ( - x ) = - g (x )

g ( - x ) =  ( - x ) ³ - 3 ( - x ) = - x² + 3 x

- g (x) =  - ( x ³) - ( - 3 x ) = - x³ + 3 x  donc impaire

Explications étape par étape

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.