Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.
Sagot :
Réponse :
Démontrer que ces 3 vecteurs sont égaux :
vec(u) = vec(AD) + vec(AE) ; AEFD est un parallélogramme donc vec(AD) = vec(EF) et vec(AE) = vec(DF)
donc vec(u) = vec(AD) + vec(DF) = vec(AF) relation de Chasles
vec(v) = vec(AB) + vec(ED) ; DEBF est un parallélogramme donc vec(ED) = vec(BF)
vec(v) = vec(AB) + vec(BF) = vec(AF)
vec(w) = vec(AC) + vec(FB) ; DEFC est un parallélogramme donc vec(DE) = vec(CF) or vec(DE) = vec(FB) car DEBF parallélogramme
vec(FB) = vec(DE) = vec(CF)
donc vec(w) = vec(AC) + vec(CF) = vec(AF)
donc on a bien vec(u) = vec(v) = vec(w) = vec(AF)
Explications étape par étape
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.