Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonsoir,
1) [tex] A [/tex] et [tex] B [/tex] sont sur le cercle trigonométrique, et sont associés respectivement à [tex] \frac{\pi}{4} [/tex] et [tex] \frac{\pi}{4} [/tex].
Donc :
[tex] A(\cos(\frac{\pi}{4});\sin(\frac{\pi}{4})) \iff A(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}) [/tex]
et :
[tex] B(\cos(\frac{\pi}{3});\sin(\frac{\pi}{3})) \iff B(\frac{1}{2};\frac{\sqrt{3}}{2}) [/tex].
2.a. On a :
[tex] \widehat{AOB}=\widehat{OxB}-\widehat{OxA}=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12} [/tex].
b. On a d'une part :
[tex] \overrightarrow{OA}.\overrightarrow{OB}=OB \times OA \times \cos(\frac{\pi}{12})=\cos(\frac{\pi}{12}) [/tex]
D'autre part :
[tex] \overrightarrow{OA}.\overrightarrow{OB}=\cos(\frac{\pi}{4}) \times \cos({frac{\pi}{3})+\sin(\frac{\pi}{4}) \times \sin(\frac{\pi}{3}) = \frac{\sqrt{2}}{2} \times \frac{1}{2} + \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{2}+\sqrt{4}}{2} [/tex]
Donc [tex] \cos(\frac{\pi}{12})=\frac{\sqrt{2}+\sqrt{6}}{2} [/tex].
On en déduit, d'après la relation fondamentale de la trigonométrie que :
[tex] \sin(\frac{\pi}{12})=\sqrt{1-(\cos(\frac{\pi}{12}))^{2}}=\frac{\sqrt{6}-\sqrt{2}}{4} [/tex].
Voilà, bonne soirée.
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.