Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Bonsoir,
1) [tex] A [/tex] et [tex] B [/tex] sont sur le cercle trigonométrique, et sont associés respectivement à [tex] \frac{\pi}{4} [/tex] et [tex] \frac{\pi}{4} [/tex].
Donc :
[tex] A(\cos(\frac{\pi}{4});\sin(\frac{\pi}{4})) \iff A(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}) [/tex]
et :
[tex] B(\cos(\frac{\pi}{3});\sin(\frac{\pi}{3})) \iff B(\frac{1}{2};\frac{\sqrt{3}}{2}) [/tex].
2.a. On a :
[tex] \widehat{AOB}=\widehat{OxB}-\widehat{OxA}=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12} [/tex].
b. On a d'une part :
[tex] \overrightarrow{OA}.\overrightarrow{OB}=OB \times OA \times \cos(\frac{\pi}{12})=\cos(\frac{\pi}{12}) [/tex]
D'autre part :
[tex] \overrightarrow{OA}.\overrightarrow{OB}=\cos(\frac{\pi}{4}) \times \cos({frac{\pi}{3})+\sin(\frac{\pi}{4}) \times \sin(\frac{\pi}{3}) = \frac{\sqrt{2}}{2} \times \frac{1}{2} + \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{2}+\sqrt{4}}{2} [/tex]
Donc [tex] \cos(\frac{\pi}{12})=\frac{\sqrt{2}+\sqrt{6}}{2} [/tex].
On en déduit, d'après la relation fondamentale de la trigonométrie que :
[tex] \sin(\frac{\pi}{12})=\sqrt{1-(\cos(\frac{\pi}{12}))^{2}}=\frac{\sqrt{6}-\sqrt{2}}{4} [/tex].
Voilà, bonne soirée.
Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.