Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

bonjour est ce que une personne peut m'aider svp .
Un nombre entier naturel N est dit parfait s'il est égal à la somme de ses diviseurs positifs autres que lui-
même.
Par exemple, 28 est un nombre parfait.
En effet, les diviseurs de 28 sont 1; 2;4;7; 14 et 28 et 1 + 2 + 4 + 7 + 14 = 28
1) Montrer que 6 et 496 sont des nombres parfaits.
2) 120 est-il un nombre parfait ? Justifier.
3) On admet qu'un nombre entier pair N est parfait si, et seulement si, il est de la forme
N = 2" (2n+1 -1), n étant un entier supérieur ou égal à 1 tel que 2n+1 -1 soit un nombre
premier.
a) Appliquer cette formule pour n compris entre 1 et 4.
Quels résultats retrouve-t-on ?
b) En utilisant la propriété ci-dessus, déterminer le plus petit nombre parfait pair supérieur au
nombre 496.​


Sagot :

Réponse :

1. les diviseurs de 6 sont : 1, 2, 3,

1+2+3=6 donc, 6 est un nombre parfait

les diviseurs de 496 sont : 1, 2, 4, 8, 16, 31, 62, 124, 248

1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496 donc, 496 est un nombre parfait

2. les diviseurs de 120 sont 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60 =240

donc 120 n'est pas un nombre premier

3.a. n doit être compris entre 1 et 4, n étant un entier supérieur ou égal à 1 tel que 2n+1 -1 soit un nombre

premier.

on prend n = 3

N = 2x(2x3+1-1)

N= 2x(6+1-1)

N=2x6

N=12

b.

Explications étape par étape

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.