Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

bonjour est ce que une personne peut m'aider svp .
Un nombre entier naturel N est dit parfait s'il est égal à la somme de ses diviseurs positifs autres que lui-
même.
Par exemple, 28 est un nombre parfait.
En effet, les diviseurs de 28 sont 1; 2;4;7; 14 et 28 et 1 + 2 + 4 + 7 + 14 = 28
1) Montrer que 6 et 496 sont des nombres parfaits.
2) 120 est-il un nombre parfait ? Justifier.
3) On admet qu'un nombre entier pair N est parfait si, et seulement si, il est de la forme
N = 2" (2n+1 -1), n étant un entier supérieur ou égal à 1 tel que 2n+1 -1 soit un nombre
premier.
a) Appliquer cette formule pour n compris entre 1 et 4.
Quels résultats retrouve-t-on ?
b) En utilisant la propriété ci-dessus, déterminer le plus petit nombre parfait pair supérieur au
nombre 496.​


Sagot :

Réponse :

1. les diviseurs de 6 sont : 1, 2, 3,

1+2+3=6 donc, 6 est un nombre parfait

les diviseurs de 496 sont : 1, 2, 4, 8, 16, 31, 62, 124, 248

1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496 donc, 496 est un nombre parfait

2. les diviseurs de 120 sont 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60 =240

donc 120 n'est pas un nombre premier

3.a. n doit être compris entre 1 et 4, n étant un entier supérieur ou égal à 1 tel que 2n+1 -1 soit un nombre

premier.

on prend n = 3

N = 2x(2x3+1-1)

N= 2x(6+1-1)

N=2x6

N=12

b.

Explications étape par étape

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.