Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

bonjours j'ai cet exercice a faire est ce que vous pourriez m'aider s'il vous plait
soit f la fonction définie sur r par f(x)=x^3-3x^2+mx ou m est un réel. pour quelles valeurs de m la fonction f est-elle strictement croissante sur r
merci

Sagot :

Réponse :

bonjour la réponse est:

f est strictement croissant sur R si et seulement si pour tout réel x, f'(x)>= 0

or f'(x)=3 x^2-6 x+m

Un trinôme est du signe de a sur R si et seulement si son discriminant delta est négatif ou nul. Ici le coefficient a est égale a 3, il est donc positif

Donc pour tout réel x f'(x)>=0 <=> delta =< 0 <=> 36-12 m <= 0 <=> m>=3

donc f est strictement croissant si et seulement si m>= 3

Explications étape par étape

bjr

f(x) = x³ - 3x² + mx

f(x) sera strictement croissante sur R si et seulement si

f'(x) est  positive

f'(x) = 3x² - 6x + m

3x² - 6x + m est un trinôme du second degré

le coefficient de x est positif, ce trinôme est positif sauf, s'il a des racines, pour les valeurs de x comprises entre les racines.

pour qu'il soit toujours positif il ne doit pas avoir de racines distinctes

son discriminant doit être négatif

∆ = (-6)² - 4*3*m = 36 - 12m

36 - 12m ≤ 0

12m ≥ 36

m ≥ 3

réponse : m ≥ 3

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.