Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour pouvez vous m’aider à calculer les intégrales du 1e exercice

Bonjour Pouvez Vous Maider À Calculer Les Intégrales Du 1e Exercice class=

Sagot :

Tenurf

Bonjour,

Dans cet exo, lorsque nous utilisons les intégrales sans borne cela signifie que nous recherchons un ensemble de fonctions, l'ensemble des primitives en fait.

[tex]\displaystyle \int \ \dfrac{dx}{(ax+b)^6} =\{\text{fonctions f sur IR telles que pour tout x de IR }f'(x)=\dfrac1{(ax+b)^6}} \}[/tex]

Tu sais que la dérivée de la fonction qui à x associe [tex]x^n[/tex]

est la fonction qui à x associe [tex]nx^{n-1}[/tex]

De même, écris de manière abusive, [tex](x^{-n})'=-nx^{-n-1}[/tex]

Donc un bon candidat ici est

[tex]f(x)=\dfrac1{(ax+b)^5}[/tex]

et quand je dérive j'obtiens

[tex]f'(x)=\dfrac{-5a}{(ax+b)^6}[/tex]

De même nous savons que deux primitives différent par une constante réelle donc l'ensemble recherchée ici est, si a différent de 0

[tex]\displaystyle \int \ \dfrac{dx}{(ax+b)^6} =\{\text{fonctions f sur IR prive de -b/a }\\\\\text{telles que pour tout x de IR prive de -b/a, C reel quelconque }\\ \\f(x)=\dfrac{-1}{5a(ax+b)^5}}+C \}[/tex]

Nous pouvons vérifier que c'est juste en dérivant ces fonctions et nous retombons sur le résultat.

Le cas où a = 0 et b différent de 0 l'ensemble des solutions sont les fonctions affines sur IR de la forme

[tex]\dfrac{x}{b^6}+C[/tex].

Si a = b= 0 ce n'est pas défini.

Pour la deuxième intégrale, si je pose, pour a différent de 0,

[tex]f(x)=exp(ax+b)\\\\f'(x)=a \times exp(ax+b)[/tex]

Donc les primitives sont de la forme

[tex]F(x)=\dfrac1{a} \times exp(ax+b) + C[/tex]

avec C un réel quelconque.

Si a = 0 et b différent de 0 l'ensemble des solutions sont les fonctions affines sur IR de la forme

[tex]exp(b) x+C[/tex].

Si a = b= 0 c'est le cas trivial où l'ensemble des solutions sont les fonctions affines sur IR de la forme

[tex]x + C[/tex].

Pour le dernier cas, pour a différent de 0, ce sont les fonctions de la forme

[tex]f(x)=\dfrac{-cos(ax+b)}{a}+C[/tex]

Pour a = 0 et b différent de 0 l'ensemble des solutions sont les fonctions affines sur IR de la forme

[tex]sin(b) x+C[/tex].

Si a = b= 0 c'est le cas trivial où l'ensemble des solutions sont les fonctions constantes sur IR.

Merci

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.