Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjours à tous,
J’ai un DM de mathématiques qui contient cet exercice, je bloc vraiment.
Pouvez-vous m’aider s’il vous plaît ?

Exercice 1
f est la fonction définie sur R par f(x) = 2x2 - 12x + 10.
1. Justifier que pour tout réel x on a f(x) = 2(x - 3)2 - 8.
2. Justifier que pour tout réel x on a f(x) = 2( x - 1)(x - 5).
3. Répondre aux questions suivantes en choisissant à chaque fois la forme la plus adaptée.
a. Déterminer les coordonnées des points d'intersection de la courbe Cfavec l'axe des ordonnées.
b. Déterminer les coordonnées des points d'intersection de la courbe Cravec l'axe des abscisses.
c. Calculer l'image de 3 - V2.
d. Déterminer les antécédents éventuels de 10.
e. La courbe Cf admet-elle des points d'ordonnée 6 ? Si oui, préciser leurs coordonnées.
f. Même question avec -10.

Merci beaucoup !

Sagot :

Réponse :

ex1

f(x) = 2 x² - 12 x + 10   définie sur R

1) justifier que pour tout  réel x  on a;  f(x) = 2(x - 3)² - 8

f(x) = 2 x² - 12 x + 10  

     = 2(x² - 6 x + 5)

     = 2(x² - 6 x + 5 + 9 - 9)

     = 2(x² - 6 x + 9 - 4)

     = 2((x - 3)² - 4)

     = 2(x - 3)² - 8

2) justifier que pour tout réel x, on a;  f(x) = 2(x - 1)(x - 5)

     f(x) = 2(x - 3)² - 8

           = 2((x - 3)² - 4)

           = 2((x - 3)² - 2²)   identité remarquable a²-b²=(a+b)(a-b)

           = 2(x - 3 + 2)(x - 3 - 2)

           = 2(x - 1)(x - 5)

3)  a) déterminer les coordonnées des points d'intersection de la courbe Cf avec l'axe des ordonnées

   f(0) = 2*0 - 12*0 + 10 = 10   ⇒ coordonnées  (0 ; 10)

    b)  déterminer les coordonnées des points d'intersection de la courbe Cf avec l'axe des abscisses

         f(x) = 0  ⇔ 2(x - 1)(x-5) = 0  ⇔ x - 1 = 0 ⇔ x = 1   ou x - 5 = 0 ⇔ x = 5

les coordonnées sont  (1 ; 0)  et (5 ; 0)

    c) calculer l'image de  (3 - √2)

           f(3-√2) = 2(3-√2  - 1)(3-√2 - 5)

                       = 2(2 - √2)(- 2 - √2)

                       = - 2(2 - √2)(2 + √2)

                       = - 2(4 - 2)

                       = - 4

         d) calculer les antécédents de 10

                 f(x) = 2 x² - 12 x + 10 = 10  ⇔ 2 x² - 12 x = 0  ⇔ 2 x (x - 6) = 0

⇔ 2 x = 0  ⇔ x = 0  ou  x - 6 = 0  ⇔ x = 6

donc les antécédents de 10 par f  sont :  0 et 6

  f) même question  avec - 10

        f(x) = 2 x² - 12 x + 10 = - 10  ⇔ 2 x - 12 x + 20 = 0 ⇔ 2(x² - 6 x + 10) = 0

                 Δ = 36 - 40 = - 4  < 0  donc pas d'antécédents

Explications étape par étape

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.